3.1962 \(\int \frac{(1-2 x)^{5/2} (3+5 x)^3}{(2+3 x)^3} \, dx\)

Optimal. Leaf size=135 \[ \frac{55 (1-2 x)^{3/2} (5 x+3)^3}{9 (3 x+2)}-\frac{(1-2 x)^{5/2} (5 x+3)^3}{6 (3 x+2)^2}-\frac{220}{21} (1-2 x)^{3/2} (5 x+3)^2+\frac{55 (1-2 x)^{3/2} (603 x+209)}{1134}-\frac{935}{81} \sqrt{1-2 x}+\frac{935}{81} \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ) \]

[Out]

(-935*Sqrt[1 - 2*x])/81 - (220*(1 - 2*x)^(3/2)*(3 + 5*x)^2)/21 - ((1 - 2*x)^(5/2)*(3 + 5*x)^3)/(6*(2 + 3*x)^2)
 + (55*(1 - 2*x)^(3/2)*(3 + 5*x)^3)/(9*(2 + 3*x)) + (55*(1 - 2*x)^(3/2)*(209 + 603*x))/1134 + (935*Sqrt[7/3]*A
rcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/81

________________________________________________________________________________________

Rubi [A]  time = 0.0617776, antiderivative size = 135, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.333, Rules used = {97, 12, 149, 153, 147, 50, 63, 206} \[ \frac{55 (1-2 x)^{3/2} (5 x+3)^3}{9 (3 x+2)}-\frac{(1-2 x)^{5/2} (5 x+3)^3}{6 (3 x+2)^2}-\frac{220}{21} (1-2 x)^{3/2} (5 x+3)^2+\frac{55 (1-2 x)^{3/2} (603 x+209)}{1134}-\frac{935}{81} \sqrt{1-2 x}+\frac{935}{81} \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Int[((1 - 2*x)^(5/2)*(3 + 5*x)^3)/(2 + 3*x)^3,x]

[Out]

(-935*Sqrt[1 - 2*x])/81 - (220*(1 - 2*x)^(3/2)*(3 + 5*x)^2)/21 - ((1 - 2*x)^(5/2)*(3 + 5*x)^3)/(6*(2 + 3*x)^2)
 + (55*(1 - 2*x)^(3/2)*(3 + 5*x)^3)/(9*(2 + 3*x)) + (55*(1 - 2*x)^(3/2)*(209 + 603*x))/1134 + (935*Sqrt[7/3]*A
rcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/81

Rule 97

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p)/(b*(m + 1)), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 149

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[((b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/(b*(b*e - a*f)*(m + 1)), x] - Dist[1
/(b*(b*e - a*f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (
b*g - a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[m]

Rule 153

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[(h*(a + b*x)^m*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/(d*f*(m + n + p + 2)), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegerQ[m]

Rule 147

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_Symbol]
:> -Simp[((a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x)*(a + b*x)^
(m + 1)*(c + d*x)^(n + 1))/(b^2*d^2*(m + n + 2)*(m + n + 3)), x] + Dist[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(
n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*
(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)), Int[(a + b*x)^m*(c + d*x)^n
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(1-2 x)^{5/2} (3+5 x)^3}{(2+3 x)^3} \, dx &=-\frac{(1-2 x)^{5/2} (3+5 x)^3}{6 (2+3 x)^2}+\frac{1}{6} \int -\frac{55 (1-2 x)^{3/2} x (3+5 x)^2}{(2+3 x)^2} \, dx\\ &=-\frac{(1-2 x)^{5/2} (3+5 x)^3}{6 (2+3 x)^2}-\frac{55}{6} \int \frac{(1-2 x)^{3/2} x (3+5 x)^2}{(2+3 x)^2} \, dx\\ &=-\frac{(1-2 x)^{5/2} (3+5 x)^3}{6 (2+3 x)^2}+\frac{55 (1-2 x)^{3/2} (3+5 x)^3}{9 (2+3 x)}+\frac{55}{18} \int \frac{\sqrt{1-2 x} (3+5 x)^2 (-3+72 x)}{2+3 x} \, dx\\ &=-\frac{220}{21} (1-2 x)^{3/2} (3+5 x)^2-\frac{(1-2 x)^{5/2} (3+5 x)^3}{6 (2+3 x)^2}+\frac{55 (1-2 x)^{3/2} (3+5 x)^3}{9 (2+3 x)}-\frac{55}{378} \int \frac{\sqrt{1-2 x} (3+5 x) (45+603 x)}{2+3 x} \, dx\\ &=-\frac{220}{21} (1-2 x)^{3/2} (3+5 x)^2-\frac{(1-2 x)^{5/2} (3+5 x)^3}{6 (2+3 x)^2}+\frac{55 (1-2 x)^{3/2} (3+5 x)^3}{9 (2+3 x)}+\frac{55 (1-2 x)^{3/2} (209+603 x)}{1134}-\frac{935}{54} \int \frac{\sqrt{1-2 x}}{2+3 x} \, dx\\ &=-\frac{935}{81} \sqrt{1-2 x}-\frac{220}{21} (1-2 x)^{3/2} (3+5 x)^2-\frac{(1-2 x)^{5/2} (3+5 x)^3}{6 (2+3 x)^2}+\frac{55 (1-2 x)^{3/2} (3+5 x)^3}{9 (2+3 x)}+\frac{55 (1-2 x)^{3/2} (209+603 x)}{1134}-\frac{6545}{162} \int \frac{1}{\sqrt{1-2 x} (2+3 x)} \, dx\\ &=-\frac{935}{81} \sqrt{1-2 x}-\frac{220}{21} (1-2 x)^{3/2} (3+5 x)^2-\frac{(1-2 x)^{5/2} (3+5 x)^3}{6 (2+3 x)^2}+\frac{55 (1-2 x)^{3/2} (3+5 x)^3}{9 (2+3 x)}+\frac{55 (1-2 x)^{3/2} (209+603 x)}{1134}+\frac{6545}{162} \operatorname{Subst}\left (\int \frac{1}{\frac{7}{2}-\frac{3 x^2}{2}} \, dx,x,\sqrt{1-2 x}\right )\\ &=-\frac{935}{81} \sqrt{1-2 x}-\frac{220}{21} (1-2 x)^{3/2} (3+5 x)^2-\frac{(1-2 x)^{5/2} (3+5 x)^3}{6 (2+3 x)^2}+\frac{55 (1-2 x)^{3/2} (3+5 x)^3}{9 (2+3 x)}+\frac{55 (1-2 x)^{3/2} (209+603 x)}{1134}+\frac{935}{81} \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right )\\ \end{align*}

Mathematica [A]  time = 0.0434734, size = 75, normalized size = 0.56 \[ \frac{\sqrt{1-2 x} \left (54000 x^5-24120 x^4-17460 x^3-67962 x^2-152833 x-64943\right )}{1134 (3 x+2)^2}+\frac{935}{81} \sqrt{\frac{7}{3}} \tanh ^{-1}\left (\sqrt{\frac{3}{7}} \sqrt{1-2 x}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[((1 - 2*x)^(5/2)*(3 + 5*x)^3)/(2 + 3*x)^3,x]

[Out]

(Sqrt[1 - 2*x]*(-64943 - 152833*x - 67962*x^2 - 17460*x^3 - 24120*x^4 + 54000*x^5))/(1134*(2 + 3*x)^2) + (935*
Sqrt[7/3]*ArcTanh[Sqrt[3/7]*Sqrt[1 - 2*x]])/81

________________________________________________________________________________________

Maple [A]  time = 0.011, size = 84, normalized size = 0.6 \begin{align*} -{\frac{125}{189} \left ( 1-2\,x \right ) ^{{\frac{7}{2}}}}-{\frac{10}{27} \left ( 1-2\,x \right ) ^{{\frac{5}{2}}}}-{\frac{370}{243} \left ( 1-2\,x \right ) ^{{\frac{3}{2}}}}-{\frac{8198}{729}\sqrt{1-2\,x}}-{\frac{14}{81\, \left ( -6\,x-4 \right ) ^{2}} \left ( -{\frac{73}{2} \left ( 1-2\,x \right ) ^{{\frac{3}{2}}}}+{\frac{1519}{18}\sqrt{1-2\,x}} \right ) }+{\frac{935\,\sqrt{21}}{243}{\it Artanh} \left ({\frac{\sqrt{21}}{7}\sqrt{1-2\,x}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1-2*x)^(5/2)*(3+5*x)^3/(2+3*x)^3,x)

[Out]

-125/189*(1-2*x)^(7/2)-10/27*(1-2*x)^(5/2)-370/243*(1-2*x)^(3/2)-8198/729*(1-2*x)^(1/2)-14/81*(-73/2*(1-2*x)^(
3/2)+1519/18*(1-2*x)^(1/2))/(-6*x-4)^2+935/243*arctanh(1/7*21^(1/2)*(1-2*x)^(1/2))*21^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 4.98348, size = 149, normalized size = 1.1 \begin{align*} -\frac{125}{189} \,{\left (-2 \, x + 1\right )}^{\frac{7}{2}} - \frac{10}{27} \,{\left (-2 \, x + 1\right )}^{\frac{5}{2}} - \frac{370}{243} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - \frac{935}{486} \, \sqrt{21} \log \left (-\frac{\sqrt{21} - 3 \, \sqrt{-2 \, x + 1}}{\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}}\right ) - \frac{8198}{729} \, \sqrt{-2 \, x + 1} + \frac{7 \,{\left (657 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - 1519 \, \sqrt{-2 \, x + 1}\right )}}{729 \,{\left (9 \,{\left (2 \, x - 1\right )}^{2} + 84 \, x + 7\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^3/(2+3*x)^3,x, algorithm="maxima")

[Out]

-125/189*(-2*x + 1)^(7/2) - 10/27*(-2*x + 1)^(5/2) - 370/243*(-2*x + 1)^(3/2) - 935/486*sqrt(21)*log(-(sqrt(21
) - 3*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 8198/729*sqrt(-2*x + 1) + 7/729*(657*(-2*x + 1)^(3/2) -
 1519*sqrt(-2*x + 1))/(9*(2*x - 1)^2 + 84*x + 7)

________________________________________________________________________________________

Fricas [A]  time = 1.57745, size = 289, normalized size = 2.14 \begin{align*} \frac{6545 \, \sqrt{7} \sqrt{3}{\left (9 \, x^{2} + 12 \, x + 4\right )} \log \left (-\frac{\sqrt{7} \sqrt{3} \sqrt{-2 \, x + 1} - 3 \, x + 5}{3 \, x + 2}\right ) + 3 \,{\left (54000 \, x^{5} - 24120 \, x^{4} - 17460 \, x^{3} - 67962 \, x^{2} - 152833 \, x - 64943\right )} \sqrt{-2 \, x + 1}}{3402 \,{\left (9 \, x^{2} + 12 \, x + 4\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^3/(2+3*x)^3,x, algorithm="fricas")

[Out]

1/3402*(6545*sqrt(7)*sqrt(3)*(9*x^2 + 12*x + 4)*log(-(sqrt(7)*sqrt(3)*sqrt(-2*x + 1) - 3*x + 5)/(3*x + 2)) + 3
*(54000*x^5 - 24120*x^4 - 17460*x^3 - 67962*x^2 - 152833*x - 64943)*sqrt(-2*x + 1))/(9*x^2 + 12*x + 4)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)**(5/2)*(3+5*x)**3/(2+3*x)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.11914, size = 159, normalized size = 1.18 \begin{align*} \frac{125}{189} \,{\left (2 \, x - 1\right )}^{3} \sqrt{-2 \, x + 1} - \frac{10}{27} \,{\left (2 \, x - 1\right )}^{2} \sqrt{-2 \, x + 1} - \frac{370}{243} \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - \frac{935}{486} \, \sqrt{21} \log \left (\frac{{\left | -2 \, \sqrt{21} + 6 \, \sqrt{-2 \, x + 1} \right |}}{2 \,{\left (\sqrt{21} + 3 \, \sqrt{-2 \, x + 1}\right )}}\right ) - \frac{8198}{729} \, \sqrt{-2 \, x + 1} + \frac{7 \,{\left (657 \,{\left (-2 \, x + 1\right )}^{\frac{3}{2}} - 1519 \, \sqrt{-2 \, x + 1}\right )}}{2916 \,{\left (3 \, x + 2\right )}^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((1-2*x)^(5/2)*(3+5*x)^3/(2+3*x)^3,x, algorithm="giac")

[Out]

125/189*(2*x - 1)^3*sqrt(-2*x + 1) - 10/27*(2*x - 1)^2*sqrt(-2*x + 1) - 370/243*(-2*x + 1)^(3/2) - 935/486*sqr
t(21)*log(1/2*abs(-2*sqrt(21) + 6*sqrt(-2*x + 1))/(sqrt(21) + 3*sqrt(-2*x + 1))) - 8198/729*sqrt(-2*x + 1) + 7
/2916*(657*(-2*x + 1)^(3/2) - 1519*sqrt(-2*x + 1))/(3*x + 2)^2